
Event-driven Replies to Data Requests
In sync with clock events

Wed, Mar 23, 1994

With the addition of clock event detection hardware in the digital
IndustryPack board used in IRMs, we can provide event-driven replies to a
data request. For the Classic Protocol, one must be able to specify what
clock event should be used to indicate on which 15 Hz cycles the data
should be sampled. Using this facility for Linac, for example, one could
then reply to a data request only on beam cycles.

The Classic Protocol format for data requests includes the following:

period #ltypes

The period byte is expressed in cycles (15 Hz), allowing for any period
from 1–255 cycles, or 0 for a one-shot request. For event-driven replies, an
8-bit clock event# is needed, so it is natural to specify this in place of the
period byte. But then we need to mark the fact that the “period” byte is
really an event#. The #listypes byte is usually limited to 4 bits or so, as a
Classic request is for a matrix of data to be returned, with all idents
processed for each listype#. If 4 bits is enough space for the #listypes field,
we can use the upper 4 bits of that byte to contain flags, one of which can
mean that the “period” byte is really a clock event#.

When the specified event occurs, an update of the request is generated, so
that the data from the data pool is returned on that 15 Hz cycle in which
the event has been detected. How can the logic recognize which events
have occurred?

The event detecting hardware is programmed to generate an interrupt
whenever any event is detected. The interrupt routine reads the event
from a FIFO, allowing for many events to occur almost simultaneously
without being lost, time-stamps it, and writes the time-stamp into the
clock event times table. The information about clock events is present in
this table, but it is not so easy to process it in order to quickly check
whether it is time to reply to a data request.

One possibility is to maintain a clock event queue, in which is recorded the
event# for each event that occurs. The interrupt routine, besides updating
the clock event times table, would also write into this queue. To make it
easy for a host to read out the contents of this queue, it can be designed as
a data stream. But DSWrite, normally used to write records into a data
stream, has too much overhead processing for interrupt code, so we can
access this queue directly more efficiently.



Event-driven Replies to Data Requests p. 2
Now the process of deciding what events have occurred since the last
request update is easy. For each request, there must be kept an OUT offset
into the event queue that indicates the next record to be checked. Scan all
event records written into the queue since the last update, looking for a
match on the specified clock event#. If there is a match, then it is time to
update and return a reply to the request.

Another approach is to maintain a bit map of events that have occurred
since the last cycle. For such requests, logic must be done each cycle to
determine whether it is the time to reply. As a result, replies may be
updated up to 15 Hz, in the case that the event occurs at 15 Hz. To
maintain such a bit map, one must be careful, as events are processed by
an interrupt, and the bit map may change between execution of any two
instructions. The task-level solution for this is to copy the bit map into
another area, then exclusive-OR the copied bit map into the dynamic one.
In this way, any bits that were set via interrupts occurring since the bit
map was copied are not lost. They will be detected on the next cycle.

A requester of event data could read out the second area at 15 Hz, thus
insuring that all events would be noticed. A request slower than 15 Hz
would not be able to detect all events, of course, by simply looking at this
copied data. If the requester didn’t care about 15 Hz events, but only about
Main Ring reset events, say, a new listype ould be designed that gave the
bit map at a slower rate, but processing would have to be done at 15 Hz to
inclusive-OR the 15 Hz samples of events during those cycles between
updates. This may be difficult.

Implementation
Support for event-driven replies has been implemented for Classic

Protocol data requests, using the bit map approach internally to detect
whether a given event has occurred since the last cycle. In the case that no
events of the given type occur, no reply will be generated. This makes it
difficult to be sure that the data request was received. The same is true for
a server node; it cannot report that a reply is tardy, unless it also knows
about the event, too. At the moment, this situation is not detected, but the
server node does need to detect the events in order to send replies to the
requester.

Generalization
It may be useful to generalize the meaning of events to include

conditions that are not actually clock events. By setting one of the bits in
the bit map that is not used as an actual clock event according to a
condition detected by Data Access Table processing or by a local



Event-driven Replies to Data Requests p. 3
condition means it might be better if the server didn’t have to know about
events itself.


